, eLearning-
Elemente, Scrum-Projekt
150 h, davon:
Präsenzzeit: 60h (4 SWS * 15
Vorlesungswochen)
Selbststudium/Projektarbeit: 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes [...] Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] davon
Präsenz: 60 h (4 SWS)
Eigenstudium: 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2019.
S. Raschka: Machine Learning mit Python [...] Verfahren des Supervised und des Unsupervised Learning
• Implementierung und Anwendung von Machine Learning-Methoden in einer Software-Bibliothek (z.B. Scikit-learn)
Lehrmaterial / Literatur
Teaching [...] TensorFlow 2 und Scikit-learn: das Praxis-Handbuch für Data Science, Deep Learning und
Predictive Analytics, mitp-Verlag, 2021.
C. M. Bishop: Pattern Recognition and Machine Learning, Springer Verlag, 2016
an_print true
Author kl
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2019-12-12T13:50:16Z
Microsoft [...] Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] org.apache.tika.parser.pdf.PDFParser
creator kl
meta:author kl
pdf:producer Microsoft: Print To PDF
meta:creation-date 2019-12-12T13:50:16Z
created 2019-12-12T13:50:16Z
access_permissio
Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2019.
S. Raschka: Machine Learning mit Python [...] Verfahren des Supervised und des Unsupervised Learning
• Implementierung und Anwendung von Machine Learning-Methoden in einer Software-Bibliothek (z.B. Scikit-learn)
Lehrmaterial / Literatur
Teaching [...] TensorFlow 2 und Scikit-learn: das Praxis-Handbuch für Data Science, Deep Learning und
Predictive Analytics, mitp-Verlag, 2021.
C. M. Bishop: Pattern Recognition and Machine Learning, Springer Verlag, 2016
introduction to object-oriented programming, including an overview of the language syntax and how to develop simple
applications. Students will learn how to write custom classes and methods, and how to test their [...]
Learning Objectives/Competencies to be Assessed
Module work (ModA)
Project Work in Groups
-Details to follow-
The group project is used to test the practical learning content
and [...]
Learning Objectives/Competencies to be Assessed
Module work (ModA)
Project Work in Groups
50% Presentation, similar to board
presentation at annual shareholder meeting
50% written
introduction to object-oriented programming, including an overview of the language syntax and how to develop simple
applications. Students will learn how to write custom classes and methods, and how to test their [...]
Learning Objectives/Competencies to be Assessed
Module work (ModA)
Project Work in Groups
-Details to follow-
The group project is used to test the practical learning content
and [...] bonus earned is forfeited. It is not possible to
transfer bonus points to repeat examinations.
The group project is used to test the practical learning content
and competence profiles, including teamwork
t: 60 h
Eigenstudium: 90 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] t: 60 h
Eigenstudium: 90 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] t: 60 h
Eigenstudium: 90 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
E.R. (2017): Computer Vision: Principles, Algorithms, Applications, Learning. Academic Press
- Eck, D.J. (2018): Introduction to Computer Graphics. Online-Ressource
- Eckardt, M. (2016): Cinema 4D 18 [...] source
- Goodfellow, I., Bengio, Y., & Courville, A. (2016): Deep Learning. MIT Press
- Kaehler, A. & Bradski, G. (2016): Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library. O'Reilly Media [...] Rodenburg, Menden
- Maeda, J. (2019). How to Speak Machine: Laws of Design for a Digital Age. Portfolio.
- Majumder, A. & Gopi, M. (2018): Introduction to Visual Computing: Core Concepts in Computer
schreiben und einen Lebenslauf verfassen.
kennen Standardsätze für Diskussionen (z. B. in Meetings), Telefo-
nieren und Präsentieren.
können technische Komponenten anhand von Beschreibungen [...] Erstellen eines Lebenslaufs, Telefonieren, Ge-
schäftsbriefe (Arten und Aufbau), typische Floskeln in Meetings, Erklä-
ren von Grafiken, Präsentationen
Technisches Englisch: Eigenschaften von Materialien [...] EI, Bac AI (Pflicht)
Studiensemester s. Studienplan
Lehrform/SWS Selbststudium / Blended Learning: 0 SWS
Arbeitsaufwand (Workload) 150 h
Empf. Voraussetzungen keine
Angestrebte Lern
depending on prior knowledge and study objective. We will be happy to advise you on your choice of module. It can also be helpful to take an Online-Selbsttest . Mathematics I Most intermediate-level topics [...] important for a successful start to your studies. In this module, you will gain an insight into physical ways of thinking and working using the example of mechanics and learn about essential physical quantities [...] decimals, terms) Length: 48 teaching units of 45 minutes each Course location: Weiden Dates : February to April; every 14 days on Saturdays (see also Further information ) Participation fee: 350,-€ Mathematics
mentoring program?
❖ to have the opportunity to share your experiences with young (future)
researchers and to offer them new perspectives and career paths.
❖ to contribute to enhancing the attractiveness [...] ss of our university and expanding
international partnerships.
❖ to inspire more people for your field of expertise.
❖ to meet new open-minded people and establish new cross-border connections
through [...] mentoring program 'careerSTEPS'?"
❖ Because we value and want to support your talent.
❖ Because you will have the opportunity to learn about what and how experts
work in a specific field and what their
mentoring program?
❖ to have the opportunity to share your experiences with young (future)
researchers and to offer them new perspectives and career paths.
❖ to contribute to enhancing the attractiveness [...] ss of our university and expanding
international partnerships.
❖ to inspire more people for your field of expertise.
❖ to meet new open-minded people and establish new cross-border connections
through [...] mentoring program 'careerSTEPS'?"
❖ Because we value and want to support your talent.
❖ Because you will have the opportunity to learn about what and how experts
work in a specific field and what their
TECHNOLOGY CLOSER TO THE PUBLIC! Play Video Schließen Medicine without technology? Unthinkable! From hearing aids to pacemakers, from MRI scanners to hybrid operating theatres, from hygiene to laboratory analyses [...] the opportunity to gain further qualification with a radiation protection course . Excursions will take you to a wide variety of areas in medical technology, from industrial production to hospital applications [...] intercultural activities and mentoring. We aim to make the challenging transition from your country to our country and the jump from secondary school to university easier. Sound interesting?! Join our
passionate about the technology that helps people to live a better life? Are you looking for a diverse role in an international environmen t? Do you want to learn something new every day and enjoy interdisciplinary [...] interdisciplinary collaboration? Have you always wanted to study abroad ? If you have answered yes to any of these questions, then you've come to the right place! Study with us and find amazing global healthcare [...] will programme computers, learn how to work with robots and use various 3D printers. You will also have contact with industry and medical facilities through excursions, listen to guest lectures from experts
Bernt Mayer
24 A Micro Data Approach to the Identification of Credit Crunches
von Timo Wollmershäuser und Horst Rottmann
25 Strategies and possible directions to improve Technology
Scouting in [...] mailto:f.seitz@oth-aw.de
page
English Abstract:
We analyze the ability of standard macro models to explain recessions and depressions as well as
financial crises. We find that the usual textbook models [...] decisive
factor is the (lack of) adjustment of the real interest rate. As a solution, we propose recourse to
elements of the Loanable Funds theory. This can better explain the interactions between the goods
Bernt Mayer
24 A Micro Data Approach to the Identification of Credit Crunches
von Timo Wollmershäuser und Horst Rottmann
25 Strategies and possible directions to improve Technology
Scouting in [...] mailto:f.seitz@oth-aw.de
page
English Abstract:
We analyze the ability of standard macro models to explain recessions and depressions as well as
financial crises. We find that the usual textbook models [...] decisive
factor is the (lack of) adjustment of the real interest rate. As a solution, we propose recourse to
elements of the Loanable Funds theory. This can better explain the interactions between the goods
attributed to
the normal response of currency holdings to the lowering of interest rates and to the
increase in income from the government stimulus. The remaining 80% may be due to an
increase [...] circulation of small, medium and large DM notes amounted to around €3 billion to €9 billion at the
end of January 2002. It declined to around €1 billion to €2 billion at the end of January 2003. This is
[...] period does not allow to establish a stable cointegration
relation, which seems to be due, in particular, to the early part of the sample.
20
We
presume that in order to estimate a suitable vector
Prüfungsvorbereitung: 30 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] 60 h
Prüfungsvorbereitung: 30 h
Gesamtzeit: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Prüfungsvorbereitung: 30 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
science and the machine learning domain
• Understanding some of the most widely used machine learning methods
• Being able to implement a machine learning pipeline in order to solve real world problems [...] Voraussetzungen*
Prerequisites
This course is an introduction to ML. There is no need to have any prior knowledge about machine learning
*Hinweis: Beachten Sie auch die Voraussetzungen nach Prüf [...] limited to
linear regression and classification, Support vector machines and Deep neural networks.
3) Introduction to Python programming for data science.
4) Applying machine learning models on
science and the machine learning domain
• Understanding some of the most widely used machine learning methods
• Being able to implement a machine learning pipeline in order to solve real world problems [...] Voraussetzungen*
Prerequisites
This course is an introduction to ML. There is no need to have any prior knowledge about machine learning
*Hinweis: Beachten Sie auch die Voraussetzungen nach Prüf [...] limited to
linear regression and classification, Support vector machines and Deep neural networks.
3) Introduction to Python programming for data science.
4) Applying machine learning models on
science and the machine learning domain
• Understanding some of the most widely used machine learning methods
• Being able to implement a machine learning pipeline in order to solve real world problems [...] Voraussetzungen*
Prerequisites
This course is an introduction to ML. There is no need to have any prior knowledge about machine learning
*Hinweis: Beachten Sie auch die Voraussetzungen nach Prüf [...] limited to
linear regression and classification, Support vector machines and Deep neural networks.
3) Introduction to Python programming for data science.
4) Applying machine learning models on
Elektromobilität
Geo-Verfahren:
Routing, Connectivity Maps
Künstliche Intelligenz:
Machine Learning, Data
Mining
Kommunikation:
C-V2X (LTE, LTE-A)
Fahrzeug:
Sensorik, Bussysteme,
ROS
[...] Programmiersprache und Konzipierung verteilter Systeme
Implementierung unter Verwendung von Device-to-Device Kommunikation
Einarbeiten in Infrastrukturkommunikation
Automotive Engineering @ OTH
14 [...] n in Fahrzeugkommunikation
Automotive Engineering @ OTH
14.11.2019
MAPR Vorstellung
7
How to MAPR @Automotive?
1. Melde dich bei uns!
2. Auswahl des MAPR-Forschungsthemas mit Prof. Dr. Höß
(2019). Hands-on machine learning with scikit-learn, keras, and
TensorFlow (2nd ed.). Sebastopol, CA: O’Reilly Media.
Bishop., C. (2016). Pattern Recognition and Machine Learning. New York, NY:
Springer [...] Studierenden solide
Grundlagen in Deep Learning erworben. Insbesondere sind sie in der Lage:
den Stand der Technik von Machine Learning und Deep Learning zu verstehen
können die verschiedenen [...] concepts and their functionality
Introduction to Robot operation system (ROS)
Introduction to mapping and pathfinding algorithms
Introduction to robotic simulation tools
Insight into robot
Studierenden solide
Grundlagen in Deep Learning erworben. Insbesondere sind sie in der Lage:
den Stand der Technik von Machine Learning und Deep Learning zu verstehen
können die verschiedenen [...] Dipl.-Ing. David Wagner
Johannes Dettelbacher, M.Sc.
Bezeichnung engl.: Introduction to Machine Learning in Python
Referent(en): Dipl.-Ing. David Wagner
Johannes Dettelbacher, M.Sc.
Hochschule [...] Dr. Bogner
DLBC-I
Deep Learning Bootcamp
Modulverantwortung:
Prof. Dr. Alexander Schiendorfer
Bezeichnung engl.: Deep Learning Bootcamp
Referent(en): Prof. Dr. Alexander
Studierenden solide
Grundlagen in Deep Learning erworben. Insbesondere sind sie in der Lage:
den Stand der Technik von Machine Learning und Deep Learning zu verstehen
können die verschiedenen [...] int true
Author wbogner
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2023-01-21T10:03:02Z
Microsoft [...] Maschinelles Lernen
Modulverantwortung:
Sebastian Wilhelm
Bezeichnung engl.: Introduction to Machine Learning
Referent(en): Wilhelm, Sebastian:
Kontakt: sebastian.wilhelm@th-deg.de
Voraussetzungen: