chance to capture
this coin migration and the mixing process of coins in different euro countries. Based on
research by Stoyan we find that per day approximately 150,000 1-euro coins flow to
Germany [...] 1-euro coins in Germany will be of foreign origin. These
figures, which were indirectly derived, seem to be economically justified.
JEL: C61, E41
Schlüsselwörter: Euro-Münzen, Geldfluss, [...] Differenzengleichung für
diese Flows zur Zeit t und tt Δ+ aufstellen:
( ) ( ) ( ) ( ) ( )to
N
tNt
N
tNttNttN
D
DD
A
DA
DDDD Δ+Δ−Δ+=Δ+ αα (1)
Dabei stellt αΔtNDA(t)/NA
pharmaceutical industry with regard
to the quality and purity of its products are particularly
high. Clean room technology is essential to meet these
demands. To meet the need for further research in this [...] cated to one IGBT and one Diode)
(4-19)
Thus, it is necessary to adapt the calculated thermal
capacity. The possible procedure is to integrate the
thermal grease layer into the module and to assign [...] i.e. how it can steer actual inflation to its target rate. As
monetary neutrality is assumed to prevail, the relative
change of the price level has to be equal to the relative
change in the nominal money
To reflect the shift to future workplace trends, the curriculum
needs to be adjusted. Similarly, to successfully make the
transition into a highly digitalized workplace, it is essential
to explain [...] and techno-
logical skills on their ability to obtain work in the future;
ultimately, we decided to research this issue to gain better
insights. According to the American Psychological Associ-
ation [1] [...] an impact in the years to come [11].
Future workplace design concepts are already beginning to
take shape [10]. To be ready for the changes that will occur,
it is essential to understand how these megatrends
Machine learning is a sub-area of artificial intelligence
that allows computers to self-learn without being pro-
grammed explicitly [7]. In a type of machine learning
called supervised learning, a sequence [...] Machine learning attacks, which can be
used to generate a mathematical model of a strong PUF,
cannot be applied to POKs. A mathematical model of a
PUF allows the generation of the response to any chal- [...] Within this context, we aim to bring our university’s
established cooperation models more closely together in
order to unleash further synergies. As such, we are open
to fresh ideas, and collaboration
requires access
to the user input as well as to a suitable unit to provide
guidance information to the user.
Interface 1: CAN (Touchpad) – CAN-Keyboard/
Mouse Adapter
In order to control the navigation [...] research and transfer.
We would like to thank all researchers for their constant
commitment to generating new knowledge and their
willingness to make this available to all of us in the form
of this research [...] theoretical maximum range to calculate
which charging stations can be reached. For range safety
reasons, a reserve minimum of SOC is provided in order
to be able to react to unforeseen events. This however
engine
knock due to the high compression ratio proved to be the
limiting factor for gas admixing in Procedure 1, the com-
pression was reduced to 16:1 in Procedure 2 in order to be
able to investigate higher [...] important to ensure
that critical data is sent reliably. To reach this objective,
it is necessary to monitor and to analyze the behavior of
the mobile network. In particular, a software needs to be
developed [...] important to ensure that critical data is
sent reliably. To reach this objective, it is necessary to monitor and to analyze the behavior of
the mobile network. In particular, a software needs to be developed
possible to get
the maximum IO-speed concerning to the HDD bottleneck.
To get the maximum speed between the main CPU and the
cluster, the best way is to use both PCIe interfaces. So
PCI0 is used to read [...] visualization needs to be flexible
and widely configurable. A high speed CAN bus is used to
carry all relevant data to be displayed. The architecture
enables the possibility to send data to the visualization [...] was necessary to determine how these
cables were best to be routed. In an effort to shorten this
development time and to develop alternative potential
solutions, it is necessary to use appropriate
this is hardly likely to have distorted the results, as this
denomination is not likely to be used much in non-euro-
area countries. The approach had to be modified when
applied to individual denominations [...] retail sales
(EHI Retail Institute 2010). The huge surge is therefore
likely to be due to domestic hoarding and especially to
foreign demand for euro banknotes. This foreign demand
may originate from [...] for all
frequencies.
Therefore, further modifications are needed to allow
for these eventualities and to enable this method to be
implemented. Fairly accurate estimation results can often
be obtained
limited, Auxiliaries
have to be switched off as much as possible and the
vehicle speed is restricted to a few km/h, e.g. with a
step up chopper from battery to dc-link to about 4km/h.
The vehicle battery [...] special attention was paid to
reduction of the running times.
However it’s possible to use the booster effect thanks
to additional energy from the energy storage in another
way – to optimize the energy saving [...] and doesn’t need to be supplied to some-
times far away consumers.
It results in reduced losses in the catenary system.
With this simulation it could be proven that it is possible to
reduce the number
(DISG, NEO-FFI) sowie
• Learning by doing (z.B. Eventmanagement).
Alle Kurse werden durch das Lernmanagementsystem begleitet. Dabei kommen auch blen-
ded-learning-Ansätze in verschieden Ausprägungen [...] Selbstlerneinheiten, Kontrollfragen, tlw. Prüfun-
gen) sind über die Lernmanagementplattform „meet2learn“ der HAW abrufbar. Soweit not-
wendig werden zu den Veranstaltungen Tutorials angeboten.
Ziel [...] Veranstaltung mit einem Kurs auf der
Plattform zu begleiten. Derzeit nutzen die Professoren „meet2learn“ vor allem für die Bereit-
stellung der Lehrunterlagen und zur Kommunikation mit den Kursteilnehmern
Studierenden solide
Grundlagen in Deep Learning erworben. Insbesondere sind sie in der Lage:
den Stand der Technik von Machine Learning und Deep Learning zu verstehen
können die verschiedenen [...] int true
Author wbogner
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2023-01-21T10:03:02Z
Microsoft [...] Maschinelles Lernen
Modulverantwortung:
Sebastian Wilhelm
Bezeichnung engl.: Introduction to Machine Learning
Referent(en): Wilhelm, Sebastian:
Kontakt: sebastian.wilhelm@th-deg.de
Voraussetzungen:
networks and deep learning
methods.
• Methodological competence: Students will be able to implement selected deep learning methods based on software libraries,
apply them to given data sets, and [...] Machine Learning with Scikit-Learn, Keras and Tensor Flow, O'Reilly, 2018.
Raschka: Machine Learning with Python: the practical handbook for Data Science, Predictive Analytics and Deep Learning, mitp-Verlag [...] Gewichtung
Learning objectives/competencies to be assessed
Zu prüfende Lernziele/Kompetenzen
annotation https://scikit-learn.org/stable/user_guide.html https://scikit-learn.org/stable/user_guide
field of deep
learning on their own, while also learning from the views and approaches of others to further deepen their understanding. Overall, it
helps students to learn not only how to self-organize [...] Machine Learning, Springer, 2006.
• F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
• Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and [...] practical machine learning tools and techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O'Reilly, 2018.
Raschka: Machine Learning with Python:
program is to enable students to act and to independently and
autonomously learn and apply scientific knowledge and methods in the fields of Artificial
Intelligence (AI), Machine Learning (ML) as [...] ²They are qualified to work on application or research-oriented tasks and projects in a
scientifically sound and largely independent manner. ³They have learned to define goals, to develop
knowledge [...] international business. ³They learn how to deal with English in a business-fluent
manner. ⁴They thus meet the requirements of international business and are prepared to take on
responsibility and
Advanced Deep Learning Advanced Deep Learning German / English Prof. Christian Bergler see also module manual MKI 4 5 WPM WPM
yes Deep Reinforcement Learing Deep Reinforcement Learning German Prof. T [...] Thomas Nierhoff see also module manual MKI 4 5 WPM WPM
Explanatory Legend
SuSe / WiSe to be offered in the semester
PM Compulsory Module
PT Project
BC Bridge Module for MAI
WPM Electi
AI Security and Privacy
AML Advanced Topics in Machine Learning
AURE Autonomous robots
CVAE Computer Vision and AI
DEV Deep Vision
DPLE Deep Learning
EMI Embedded Intelligence
FL2 Foreign Language 2
SARA [...] MAI BC
Fächer
Name Langname
BLOCK Blockveranstaltung
INT International Affairs & Intercultural Meeting
PRS Programming Starter
ROS Robotics Starter
WEB_Ue Web-Technologies (Übung)
WEB_VL Web-Technologies
true
Author Michael Wiehl
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2024-06-05T07:25:13Z
Studienplan [...] Deep Learning (DPLE) 4 5 4 5
1.2 Computer vision and AI (CVAE) 4 5 4 5
1.3 Autonomous robots (AURE) 4 5 4 5
0 0
AI basics data & language (winter) 12 15 0 0 0 0 12 15 17%
2.1 Machine Learning (MALE)
Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 60 h
= 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
true
Author Michael Wiehl
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2023-11-30T15:02:52Z
Studienplan [...] 1.1 Deep Learning 4 5 4 5 DPLE
1.2 Computer vision and AI 4 5 4 5 CVAE
1.3 Autonomous robots 4 5 4 5 AURE
0 0
AI basics data & language (winter) 12 15 0 0 0 0 12 15 17%
2.1 Machine Learning 4 5 4 5 MALE
eigenverantwortliches Werken
(Projektarbeit unter Nutzung des Hochschul-
Lernmanagementsystem meet-to-learn.de)
Art der Prüfung
(Studienarbeit, Klausur,
Leistungsnachweise)
schriftliche Prüfung [...] zu durchlaufen. Von der
Ideenfindung, Storyboard, der Medienwahl, über Briefings, Pre-production-Meetings, in
denen Inhalte und Ideen überprüft werden. Die Diskussion in der Gruppe über den
aktuellen [...] Day V, 11. Mai 2007,
3. Lengerich [u.a.], Pabst Science Publ., 2007
4. Bousquet, Michele: How to cheat in 3ds Max
2009, Amsterdam, Focal Press/Elsevier, 2008
5. Wendt, Volker: 3ds Max 9 Workshops
/Pipher, J./Silverman, J. H. (2014): An Introduction to Mathematical Cryptography, 2. Auflage, Springer
· Katz, J./Lindell, Y. (2015): Introduction to Modern Cryptography, 2. Auflage, CRC Press
· Lipton [...] Synthese gesprochener Sprache (text-to-speech)
· Sprachdialogsysteme
· Textanalyse, Dokumentanalyse, OCR
· Clustering/Klassifikation
· Neuronale Netze und Deep Learning
Lehrmaterial/Literatur
Teaching [...]
Vor-/Nachbereitung: 45 h
PrA: 45 h
Gesamt: 150 h
Lernziele/Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden
über die folgenden
Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 60 h
= 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
/Pipher, J./Silverman, J. H. (2014): An Introduction to Mathematical Cryptography, 2. Auflage, Springer
· Katz, J./Lindell, Y. (2015): Introduction to Modern Cryptography, 2. Auflage, CRC Press
· Lipton [...] Synthese gesprochener Sprache (text-to-speech)
· Sprachdialogsysteme
· Textanalyse, Dokumentanalyse, OCR
· Clustering/Klassifikation
· Neuronale Netze und Deep Learning
Lehrmaterial/Literatur
Teaching [...]
Vor-/Nachbereitung: 45 h
PrA: 45 h
Gesamt: 150 h
Lernziele/Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden
über die folgenden
university, with
high quality in education
and you want to have some
fun during your semester
abroad, USC is the right place to go! USC is close to beautiful
beaches on the Sunshine Coast, with great [...] Einrichtungen variieren.
UCS is a great choice if you want to learn
Australian culture and mindset from inside,
get a double degree and also meet new
friends from all over the globe. We really
enjoyed [...] page
Studying at USC has allowed
me to successfully complete
the business side of my double
degree (Engineering and
Business). It has broadened my
horizons to the opportunities
one has when studying
science and the machine learning domain
• Understanding some of the most widely used machine learning methods
• Being able to implement a machine learning pipeline in order to solve real world problems [...] Voraussetzungen*
Prerequisites
This course is an introduction to ML. There is no need to have any prior knowledge about machine learning
*Hinweis: Beachten Sie auch die Voraussetzungen nach Prüf [...] limited to
linear regression and classification, Support vector machines and Deep neural networks.
3) Introduction to Python programming for data science.
4) Applying machine learning models on