true
Author Andrea Bäuml
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2025-12-04T13:37:11Z
ME_Pr [...] is
ME Innovationsmanagement Steinhauser semesterbegleitender Leistungsnachweis
ME Machine Learning for Engineers Götz Th. semesterbegleitender Leistungsnachweis
ME Maschinelles Sehen und Must
true
Author David Powering
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2025-12-04T12:35:01Z
Microsoft [...] Unterricht oft schwer erfassbar sind,
anschaulich sichtbar und verständlich. Das neu eingerichtete Learning Lab der
Realschule bot mit seinen flexiblen Tischinseln optimale Rahmenbedingungen für
das Mixe [...] von Schädel und
Nervenbahnen ermöglicht Erkunden komplexer Strukturen.
Modernes Lernumfeld: Das Learning Lab ist vollständig für
das MR-Anatomiepraktikum vorbereitet.
Mikroskopische Inhalte im Raum:
what-to-do-to-switch-to-biblatex https://tex.stackexchange.com/questions/5091/what-to-do-to-switch-to-biblatex
annotation https://tex.stackexchange.com/questions/5091/what-to-do-to-switch-to-biblatex [...] what-to-do-to-switch-to-biblatex
annotation https://tex.stackexchange.com/questions/5091/what-to-do-to-switch-to-biblatex https://tex.stackexchange.com/questions/5091/what-to-do-to-switch-to-biblatex [...] what-to-do-to-switch-to-biblatex https://tex.stackexchange.com/questions/5091/what-to-do-to-switch-to-biblatex
annotation https://tex.stackexchange.com/questions/5091/what-to-do-to-switch-to-biblatex
Still trying. Still growing. You’ve learned to adapt-to new cultures, new struggles, new versions of yourself. You’ve built a life from scratch. That’s something to be proud of. You’re no longer the person
:can_print true
Author
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2025-11-24T11:02:42Z
Liste [...] Informatik III Kl 90 Breidbach Schmidl
MA ohne Industrie 4.0 StA - Schmidl Breidbach
MA ohne
Machine Learning for Engineers – Einführung in
Methoden und Werkzeuge
StA - Breidbach Schmid
MB 17-18 WS 2
PrA Project work in a small team
Deep Learning
1. Bergler, Christian
2. Levi, Patrick
Kl 26.01.2026 90 min 14:00 15:30
Deep Reinforcement Learning
1. Nierhoff, Thomas
2. Bergler, Christian
[...]
presentation)
International Affairs & Intercultural
Meeting (BC)
1. Heckmann,
Dominikus
2. Wolff, Annabelle
ModA
Machine Learning (Englisch)
1. Levi, Patrick
2. Bergler, Christian
PrA [...] Friday, 30.01.2026
Exam Exam Exam Exam Exam
14:00–15:30 Deep Learning Ausgewählte Themen der
Künstlichen Intelligenz Advanced Deep Learning
Time
Monday, 02.02.2026 Tuesday, 03.02.2026 Wednesday, 04
Dominikus
2. Nierhoff, Thomas
Präs
Machine Learning 1
1. Bergler, Christian
2. Brunner, Fabian
Keine Kl 02.02.2026 60 min 08:30 09:30
Machine Learning 2
1. Levi, Patrick
2. Bergler, Christian
[...] einseitig selbst beschrie-
ben, nicht progr. TR Kl 30.01.2026 60 min 14:00 15:00
Ethik, Kognition & Meeting
1. Heckmann,
Dominikus
2. Ranisch, Lisa Marie
Präs
Foreign Language 1 (Deutsch)
1. Fröhlich [...] handschr. be-
schriftet Kl 28.01.2026 90 min 14:00 15:30
International Affairs & Intercultural
Meeting
1. Heckmann,
Dominikus
2. Wolff, Annabelle
ModA
KI Projekt Gaming
1. Nierhoff, Thomas
2
edu/~wcook/papers/HowToGetaPaperAcceptedToOOPSLA/HowToGetAPaperAcceptedToOOPSLA.htm https://www.cs.utexas.edu/~wcook/papers/HowToGetaPaperAcceptedToOOPSLA/HowToGetAPaperAcceptedToOOPSLA.htm
annotation [...] edu/~wcook/papers/HowToGetaPaperAcceptedToOOPSLA/HowToGetAPaperAcceptedToOOPSLA.htm https://www.cs.utexas.edu/~wcook/papers/HowToGetaPaperAcceptedToOOPSLA/HowToGetAPaperAcceptedToOOPSLA.htm
annotation [...] ____ to ____.
This year, ____ received many submissions. In order to speed
up the review process, some low-quality papers will be
rejected directly based on TPC chairs' judgement.
We regret to inform
WPM
X Machine Learning 1 Machine Learning 1 Prof. Fabian Brunner siehe MHB KI/IK 4 5 O WPM O WPM O WPM O FWPM SWPM SWPM WPM PM WPM
Maschinelles Lernen in der Robotik Machine Learning in Robotics Prof [...] true
Author Julia Weiss
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2025-11-17T09:57:22Z
!! UP [...] 5 VM [KI]
WPM [IK]
auf längere absehbare Zeit nicht angeboten
X Reinforcement Learning Reinforcement Learning Prof. Thomas Nierhoff siehe MHB KI/IK SWPM SWPM VM [KI]
WPM [IK]
Robotik Robotics
Zatocil
2. Wolfram
s. Prüfungsplan EI O O O O 26.01.2026 14:00–15:30 s. Prüfungsplan EI
Machine Learning 1 5 1. Bergler
2. Brunner
s. Prüfungsplan KI O O O O X X X X 02.02.2026 08:30–09:30 s. Prüfungsplan [...] Schäfer
X X X X X X X X ModA
Quantencomputing 5 1. Breidbach
2. Levi
X ModA
Reinforcement Learning 5 1. Nierhoff
2. Heckmann
s. Prüfungsplan KI X
s. Prüfungsplan KI
Vertiefungsmodul bei KI,
SW-Modul
Advanced Deep Learning Advanced Deep Learning German / English Prof. Christian Bergler see also module manual MKI 4 5 WPM WPM ohne TN‐Begrezung
no Deep Reinforcement Learing Deep Reinforcement Learning German [...] hoff see also module manual MKI 4 5 WPM WPM ohne TN‐Begrezung
Explanatory Legend
SuSe / WiSe to be offered in the semester
PM Compulsory Module
PT Project
BC Bridge Module for MAI
WPM
field of deep
learning on their own, while also learning from the views and approaches of others to further deepen their understanding. Overall, it
helps students to learn not only how to self-organize [...] practical machine learning tools and techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O'Reilly, 2018.
Raschka: Machine Learning with Python: [...] Machine Learning, Springer, 2006.
• F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
• Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and
Beginn Ende Details
Deep Learning (SPO alt)
1. Levi, Patrick
2. Bergler, Christian
ModA
Analyse und Bearbeitung einer gegebe-
nen Aufgabenstellung mit Hilfe von Deep
Learning; prototypische Realisierung [...] Datum Dauer Beginn Ende Details
Machine Learning 1
1. Bergler, Christian
2. Brunner, Fabian
Keine Kl 02.02.2026 60 min 08:30 09:30
Machine Learning 2
1. Levi, Patrick
2. Bergler, Christian
[...] & Cyber-Physische
Systeme
1. Wiehl, Michael
2. Nierhoff, Thomas
ModA
Ethik, Kognition & Meeting
1. Heckmann,
Dominikus
2. Ranisch, Lisa Marie
Präs
Grundlagen der Robotik
1. Wenk, Matthias
machine learning.
• Methodological competence: The students are able to practically apply various machine learning methods and to evaluate the
results.
• Personal competence: Ability to discuss [...] Personal competence: Ability to communicate about lightweight engineering; ability to work independently as well as in team to
solve a technical problem; ability to lifetime learning
Course Content
Inhalte [...] private situations. They learn to identify these situations and to appear interculturally competent.
• Personal competence: Students acquire the interdisciplinary ability to perform in a culturally
Zusammenhang mit
Energiespeicherung (Wasserstoff, Elektrolyse, Brennstoffzellen, power to gas, power to liquid, biomass to liquid, etc.), Flexibilisierung von
Kraft-Wärme-Kälte-Kopplungsprozessen durch die [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Machine Learning mit Scikit-Learn, Keras und TensorFlow“, O'Reilly; 2. Edition (2020)
Bishop, C.M.: „Pattern Recognition and Machine Learning“, Springer (2006)
Chollet, F.: „Deep Learning with Python“ [...] Seite 66 von 86
4.1.3 Machine Learning for Engineers – Einführung in Methoden und Werkzeuge
Machine Learning for Engineers – Introduction to Methods ans Tools
Zuordnung zum
Curriculum [...] und verschiedener Algorithmen des
Machine Learning.
• Methodenkompetenz:
Die Studierenden sind befähigt, verschiedene Verfahren des Machine Learnings praktisch anzugehen und die Ergebnisse zu
Ivanov, Dmitry (2024): Digital Supply Chain Management and Technology to Enhance Resilience by Building and Using End-to-End
Visibility During the COVID-19 Pandemic. In: IEEE Trans. Eng. Manage. [...] Roming, Lukas; Franke, Jörg; Reitelshöfer, Sebastian (2025b): The path to a more efficient
circular economy by integrating deep learning into robotic sorting system. In: Global Conference on Sustainable [...] Bernt Mayer
24 A Micro Data Approach to the Identification of Credit Crunches
von Timo Wollmershäuser und Horst Rottmann
25 Strategies and possible directions to improve Technology
Scouting in
• Raschka, S., Liu, Y. H., & Mirjalili, V. (2022). Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with
Python. Packt Publishing Ltd.
• Goodfellow [...] lineare Regression mit scikit-learn
• Einführung in Deep Learning
- Grundprinzipien neuronaler Netze (Feedforward, Training, Overfitting)
- Erstellung einfacher Deep-Learning-Modelle mit Keras oder PyTorch [...] Material / Reading
• Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. "
O'Reilly Media, Inc.".
•
system Examination boards Learning spaces Insurances You are here: Studies Getting started University formalties Info session: Exam registration and study organization In addition to revising for exams, success [...] from Wednesday, 10th December 2025 to Wednesday, 7th January 2026 inclusive . (Please note: MANDATORY exam registration for all). All deadlines and dates related to exams can be found on the website ( [...] lecture-free periods Examinations Examinations Repeat examinations Examination system Examination boards Learning spaces Insurances University formalties Overview Info session: Exam registration and study organization
also be an HR session to present entry-level and career opportunities. This will give you the opportunity to meet HR managers in person. Don't miss this chance! We will travel to both companies by bus [...] bus. Everything is free of charge. We will meet in front of the OTH cafeteria for departure. We will also return to the OTH. Kind regards ... Vielen Dank und schöne Grüße Fabian Liedl [...] Dear students, please register for the excursions to ZMS in Schwandorf and Siemens in Amberg via https://www.oth-aw.de/en/myoth/ . You can find the excursions in the excursion portal. Destination: ZMS
Environmental Engineering
There is no entitlement to all compulsory elective modules and elective modules being offered. Similarly, there is no entitlement to courses being offered if the number of participants [...] Technology 5 4
3.2.2 Digital Signal Processing 5 4
3.2.3 PLC-Programming 5 4
3.2.4 Machine Learning 5 4
3.2.5 Energy Conversion in Power/Working Machines 5 4
3.2.6 Smart Grids 5 4
3.3.1 Rheology
true
Author Michael Wiehl
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2025-10-22T13:40:25Z
Studienplan [...] Deep Learning (DPLE) 4 5 4 5
1.2 Computer vision and AI (CVAE) 4 5 4 5
1.3 Autonomous robots (AURE) 4 5 4 5
0 0
AI basics data & language (winter) 0 0 12 15 0 0 12 15 17%
2.1 Machine Learning (MALE)
introduction to object-oriented programming, including an overview of the language syntax and how to develop simple
applications. Students will learn how to write custom classes and methods, and how to test their [...]
Learning Objectives/Competencies to be Assessed
Module work (ModA)
Project Work in Groups
50% Presentation, similar to board
presentation at annual shareholder meeting
50% written [...] weighting *2)
Learning Objectives/Competencies to be Assessed
Module work (ModA) Project Work in Groups The group project is used to test the practical learning content
and competence profiles