field of deep
learning on their own, while also learning from the views and approaches of others to further deepen their understanding. Overall, it
helps students to learn not only how to self-organize [...] practical machine learning tools and techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O'Reilly, 2018.
Raschka: Machine Learning with Python: [...] Machine Learning, Springer, 2006.
• F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
• Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and
science and the machine learning domain
• Understanding some of the most widely used machine learning methods
• Being able to implement a machine learning pipeline in order to solve real world problems [...] Voraussetzungen*
Prerequisites
This course is an introduction to ML. There is no need to have any prior knowledge about machine learning
*Hinweis: Beachten Sie auch die Voraussetzungen nach Prüf [...] limited to
linear regression and classification, Support vector machines and Deep neural networks.
3) Introduction to Python programming for data science.
4) Applying machine learning models on
eigenverantwortliches Werken
(Projektarbeit unter Nutzung des Hochschul-
Lernmanagementsystem meet-to-learn.de)
Art der Prüfung
(Studienarbeit, Klausur,
Leistungsnachweise)
schriftliche Prüfung [...] zu durchlaufen. Von der
Ideenfindung, Storyboard, der Medienwahl, über Briefings, Pre-production-Meetings, in
denen Inhalte und Ideen überprüft werden. Die Diskussion in der Gruppe über den
aktuellen [...] Day V, 11. Mai 2007,
3. Lengerich [u.a.], Pabst Science Publ., 2007
4. Bousquet, Michele: How to cheat in 3ds Max
2009, Amsterdam, Focal Press/Elsevier, 2008
5. Wendt, Volker: 3ds Max 9 Workshops
J., Osborn, D., Murphy, P. & Edwards, A. (2017). The Cool Stuff in Premiere Pro: Learn advanced editing
techniques to dramatically
speed up your workflow (2nd ed.). Apress. doi: 10.1007/978-1-4842-2890-6 [...] /Pipher, J./Silverman, J. H. (2014): An Introduction to Mathematical Cryptography, 2. Auflage, Springer
· Katz, J./Lindell, Y. (2015): Introduction to Modern Cryptography, 2. Auflage, CRC Press
· Lipton [...] Synthese gesprochener Sprache (text-to-speech)
· Sprachdialogsysteme
· Textanalyse, Dokumentanalyse, OCR
· Clustering/Klassifikation
· Neuronale Netze und Deep Learning
Lehrmaterial/Literatur
Teaching
/Pipher, J./Silverman, J. H. (2014): An Introduction to Mathematical Cryptography, 2. Auflage, Springer
· Katz, J./Lindell, Y. (2015): Introduction to Modern Cryptography, 2. Auflage, CRC Press
· Lipton [...] Synthese gesprochener Sprache (text-to-speech)
· Sprachdialogsysteme
· Textanalyse, Dokumentanalyse, OCR
· Clustering/Klassifikation
· Neuronale Netze und Deep Learning
Lehrmaterial/Literatur
Teaching [...]
Vor-/Nachbereitung: 45 h
PrA: 45 h
Gesamt: 150 h
Lernziele/Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden
über die folgenden
Verfahren (z.B. XAI, Embedded AI, semi-/self-supervised learning, active learning, federated learning,
contrastive learning, transfer learning, DL für Audiosignale)
Lehrmaterial / Literatur
Teaching [...] Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2018
Raschka: Machine Learning mit Python: das [...] and Machine Learning, Springer, 2006.
F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
A. Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and
Verfahren (z.B. XAI, Embedded AI, semi-/self-supervised learning, active learning, federated learning,
contrastive learning, transfer learning, DL für Audiosignale)
Lehrmaterial / Literatur
Teaching [...] Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2018
Raschka: Machine Learning mit Python: das [...] and Machine Learning, Springer, 2006.
F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
A. Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and
achievements of previous studies can only be credited if the learning outcome can be attributed to a Master
level or corresponds to the learning outcome of a module in the OTH Master's degree programme. [...] Berechnung
Workload:
According to § 8 para. 1 sentence 3 BayStudAkkV, the following applies: One credit point is based on a
workload of 25 to 30 hours.
To calculate the workload, a distinction [...] 3.4 Master´s-Degree and Service Learning
Masterabschluss und Service Learning
ID Name
02003 Colloquium
00850 Master´s Thesis
00851 Service Learning
page
8
Weitere Literatur und Informationen werden in der Vorlesung
oder im Lernmanagementsystem „meet-to-learn“ bekannt
gegeben.
page
Modulhandbuch für den Masterstudiengang Seite 5
Int [...] Weitere Informationen (z.B. Literatur) werden in der Vorlesung
oder im Lernmanagementsystem „meet-to-learn“ bekannt
gegeben.
page
Modulhandbuch für den Masterstudiengang Seite 6
Int [...] nen (z.B. Literatur) werden in der Vorlesung,
in den Handouts oder im Lernmanagementsystem „meet-to-
learn“ bekannt gegeben.
page
Modulhandbuch für den Masterstudiengang Seite 10
In
students will be able to
• understand, categorize and analyze cultures according to chosen cultural dimensions and taxonomies
• understand, judge the benefit of different tools used to train personnel [...] solutions to deal with conflict in managing intercultural groups
• analyze and adapt own behavior in intercultural situations as well as to evaluate behavior of others and advise them appropriately to be
[...] assimilators and critical incidents are investigated in their use to teach cul-
tural awareness. Students are given the opportunity to use these tools in both theoretical and practical exercises. Additionally
students will be able to
understand, categorize and analyze cultures according to chosen cultural dimensions and taxonomies
understand, judge the benefit of different tools used to train personnel [...] solutions to deal with conflict in managing intercultural groups
analyze and adapt own behavior in intercultural situations as well as to evaluate behavior of others and advise them appropriately to be
[...] assimilators and critical incidents are investigated in their use to teach cul-
tural awareness. Students are given the opportunity to use these tools in both theoretical and practical exercises. Additionally
Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2018
Raschka: Machine Learning mit Python: das [...] Regularisierung)
• Grundlegende Verfahren des Supervised Learning
• Grundlegende Verfahren des Unsupervised Learning
• Data Preprocessing
• Machine Learning in Python
Lehrmaterial / Literatur [...] Hinweis auf ein Bonussystem führen
page
Machine Learning
Machine Learning
Zuordnung zum
Curriculum
Classification
Modul-ID
Module ID
Art des Moduls
Inverted Classroom, Peer Instruction, Collaborative Learning, Problem
Based Learning, Learning on Demand, Micro-Learning)
3. Blended-Learning: Modelle, Vor- und Nachteile, Best-Practice Beispiele [...] (2018). Handbuch E-Learning: Lehren und Lernen mit digitalen Medien. UTB.
Arshavskiy, M. (2017). Instructional Design for eLearning: Essential guide for designing successful eLearning courses. CreateSpace [...] Dirksen, J. (2016). Design for How People Learn. New Riders.
eLearning Industry Inc, https://elearningindustry.com. Zuletzt geprüft am 11.08.2020.
eLearning Journal Online, https://www.elearning-journal
Inverted Classroom, Peer Instruction, Collaborative Learning, Problem
Based Learning, Learning on Demand, Micro-Learning)
3. Blended-Learning: Modelle, Vor- und Nachteile, Best-Practice Beispiele [...] (2018). Handbuch E-Learning: Lehren und Lernen mit digitalen Medien. UTB.
Arshavskiy, M. (2017). Instructional Design for eLearning: Essential guide for designing successful eLearning courses. CreateSpace [...] Dirksen, J. (2016). Design for How People Learn. New Riders.
eLearning Industry Inc, https://elearningindustry.com. Zuletzt geprüft am 11.08.2020.
eLearning Journal Online, https://www.elearning-journal
Berechnung des Workload
According to § 8 para. 1 sentence 3 BayStudAkkV, the following applies: One credit point is based on a
workload of 25 to 30 hours.
To calculate the workload, a distinction [...] the preparation and follow-up of the learning material
• Exam preparation = hours spent preparing for an examination event
• Examination workload = hours required to complete the examination
• Internships [...] university must be
submitted to the Students` Office after enrollment at OTH. Subsequently, the respective lecturers will check
whether the subjects already taken correspond to the requirements of our subjects
networks and deep learning
methods.
• Methodological competence: Students will be able to implement selected deep learning methods based on software libraries,
apply them to given data sets, and [...] Machine Learning with Scikit-Learn, Keras and Tensor Flow, O'Reilly, 2018.
Raschka: Machine Learning with Python: the practical handbook for Data Science, Predictive Analytics and Deep Learning, mitp-Verlag [...] Gewichtung
Learning objectives/competencies to be assessed
Zu prüfende Lernziele/Kompetenzen
annotation https://scikit-learn.org/stable/user_guide.html https://scikit-learn.org/stable/user_guide
field of deep
learning on their own, while also learning from the views and approaches of others to further deepen their understanding. Overall, it
helps students to learn not only how to self-organize [...] Machine Learning, Springer, 2006.
• F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
• Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and [...] practical machine learning tools and techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O'Reilly, 2018.
Raschka: Machine Learning with Python:
Practical Machine Learning Tools and Techniques, Morgan
Kaufmann, 2018.
• A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 201.
• S. Raschka: Machine Learning mit Python [...] Einsatzgebiete von Reinforcement Learning
Problemstellung und Grundbegriffe
Markov-Prozesse
Temporal Difference Learning (z.B. Q-Learning, SARSA)
Deep Reinforcement Learning
Lehrmaterial/Literatur
Teaching [...] Nachbereitung sowie KI.Meeting)
Lernziele/Qualifikationen des Moduls
Learning Outcomes
Das Modul besteht aus zwei Vorlesungsteilen KI.Ethik und KI.Kognition sowie einem KI.Meeting.
Nach dem erfolgreichen
Practical Machine Learning Tools and Techniques, Morgan
Kaufmann, 2018.
• A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 201.
• S. Raschka: Machine Learning mit Python [...] Einsatzgebiete von Reinforcement Learning
Problemstellung und Grundbegriffe
Markov-Prozesse
Temporal Difference Learning (z.B. Q-Learning, SARSA)
Deep Reinforcement Learning
Lehrmaterial/Literatur
Teaching [...] Nachbereitung sowie KI.Meeting)
Lernziele/Qualifikationen des Moduls
Learning Outcomes
Das Modul besteht aus zwei Vorlesungsteilen KI.Ethik und KI.Kognition sowie einem KI.Meeting.
Nach dem erfolgreichen
presented at
the project kick-off and have to be worked on successively.
Each student has to contribute individually to the common task. The
overall results are to be submitted in the form of a pitch video [...] Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2018.
S. Raschka: Machine Learning mit Python: [...] Nachbereitung sowie KI.Meeting)
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Das Modul besteht aus zwei Vorlesungsteilen KI.Ethik und KI.Interaktion sowie einem KI.Meeting
Teil 1: Ethik
ce): The students are able to combine knowledge and skills
from the basic modules to derive and develop new solutions. The have the competence to discuss issues related to energy storage in
interdisciplinary [...] Psychological Association. The Official Guide to APA Style (7th Ed.) Washington.
Carlson, K. A. & Winquist, J. R. (2017). An Introduction to Statistics. An Active Learning Approach. SAGE.
Creswell, J. W. & Plano [...] Ability to recognise legal problems in energy/environmental law, identification of the most important applicable regulations
Independent application of regulations relevant to practice
Ability to identify
Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 60 h
= 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 60 h
= 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
and Machine Learning, Springer, 2006.
F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
A. Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and [...] Verfahren des Supervised Learning (z.B. baumbasierte Ansätze, SVM, Ensemble-Methoden)
• Grundlegende Verfahren des Unsupervised Learning (z.B. PCA, k-means Clustering)
• Machine Learning in Python mit der [...] Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2018
W. McKinney: Datenanalyse mit Python, O’Reilly, 2018
S. Raschka: Machine Learning mit Python: das Praxis-Handbuch für